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ABSTRACT

The generation of surface waves in a fluid caused by a
partially submerged body is modeled mathematically as a boundary
value problem for the Laplacian with Neumann data on the bottom
of the fluid container and on the body, a linearized free sur-
face condition and a radiation condition at infinity. Fritz
John (Comm. Pure Appl. Math., IIX, 1950) showed that the problem
had a unique solution only under rather restrictive assumptions
on the body geometry and reformulated the problem as an integral
equation which was not uniquely solvable at certain irregular
frequencies. In the present work, uniqueness is established for
more general geometries, allowing cornmers and nonnormal inter-
sections of the body with the free surface. Also presented are
two methods of modifying the integral equation so that it is
uniquely solvable for all frequencies. One method involves
introducing an additional integral on the waterplane, while in
the second method, an additional integral term is added to the

equation which remains an equation only over the submerged por-
tion of the body.

ADMINISTRATIVE INFORMATION
The research reported here was proposed by the Numerical Ship Hydrodynamics
Program at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) .
This program is jointly supported by the Office of Naval Research under Program Ele-
ment 61153N, Task Area RR0140302, and by the Independent Research Program at DTNSRDC
under Program Element 61152N, Task Area ZR0230101, using Work Units 1552-018 and
1843-015. The research was performed at DINSRDC by the author during sabbatical

leave from the University of Delaware under the Intergovernmental Personnel Act of
1970.

INTRODUCTION

It has been thirty years since Fritz John published a pair of papers with a
similar titlel™*? which still underlie present thinking. In Reference 2, which must
be regarded as a tour de force of classical applied mathematics, John analyszed simple
harmonic motion of the fluid in which an impenetrable body is partially immersed.
He formulated the problem mathematically as a boundary value problem for Laplace's
equation with appropriate boundary conditions on the body, the free surface, the
bottom of the fluid container, and the radiation condition. Under certain restric-
tions on the body shape, he proved the existence of a unique solution and formulated

#*A complete listing of references is given on page 57.




an integral equation for the velocity potential evaluated on the body surface. This
equation is not uniquely solvable at a set of irregulaf frequencies as John pointed ¥
! out and this has plagued researchers in this area ever since.
John based his work on classical potential theory even though the physical "
domain had a corner at the intersection of the body and the free surface. Thus, he
looked for classical solutions, continuously differentiable up to and including the
boundary, although he did not show that the solution, the existence of which he
proved, actually satisfied this property. This is not surprising in the light of
subsequent work3 which shows, in fact, that such smooth solutions do not exist. How-
ever, by employing the fundamental work on potential theory for irregular domains,

developed by Burago et al.,4 Kril,S and Wendland,6 it is possible to formulate the

problem in a more appropriate mathematical setting and to show the existence of a
unique solution under less restrictive assumptions on the obstacle shape. This is
done in the present report where uniqueness and existence are established for piece-
wise smooth bodies. If we permit the wave number to have a nonzero imaginary part,

no further restrictions are required, whereas we do restrict the bodies to those

whose projection ontc the free surface coincides with the waterplane area if the wave
number has real values. In either case, we relax the conditions John imposed and ]
permit nonnormal intersections of the body with the free surface as well as bodies
with corners.

We also present two methods of resolving the problem of irregular frequenéies.
One is essentially a simplified version of the method proposed by Chang and Pien7 in
which the obstacle surface is augmented by the waterplane to obtain an integral equa-

tion on a closed surface soluble at all frequencies. The second method is modeled
after a treatment of exterior problems for the Helmholtz equation where similar prob-
lems occur; Burton and Hiller,8 Kleinman and Roach,9 and Angell and Kleinman.lo

k. Here the integral operator is augmented rather than its domain and range which
3 remain the submerged portion of the body. An alternate method for removing the ir-
f regular frequenclies has been given by Ursell,ll using a modified Green's function as
proposed by Jones,12 to handle a similar problem in acoustic scattering.

NOTATION AND FORMULATION
+ As 1{llustrated in Figures 1 and 2, the geometry of our problem is described in
: the following manner. Let D_ be a connected bounded open set in three-dimensional

space, R3, whose boundary consists of aw. a closed bounded connected region in the
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Figure 1 -~ Floating Body - Three-Dimensional View

~h

Figure 2 - Floating Body - Section in (p,y) Plane
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x-~z plane and Co, a piecewise smooth surface in the lower half space, y < 0, in the
Co is to be biecewise Liapunov, that is, com-

following sense. The boundary 3D_ = Ewu
posed of a finite number of segments each of which 1ies on a Liapunov surface (on
which there is a Holder continuous normal); see, e.g., G'\inter13
tion of Liapunov surfaces. Moreover, 3D_ satisfies a two-sided cone condition; i.e.,

for a precise defini-

there exist o, h > 0, such that each point of dD_ may be taken as the vertex of two
cones of height h and vertex angle o, one lying entirely in D_ and one in the com-
plement of the closure of D_. A rectangular coordinate system is oriented with the
origin in Cw and D_ lying below the y = 0 plane. Let Cf, the free surface, be the
closure of the complement of Cw in the y = 0 plane, and let CB be the plane y = -h.
Denote by D, the unbounded domain bounded by Cf, Co’ and CB' Also let E; be the re-
flection of C  in the x-z plane and D_ be the reflection of D_. Unless otherwise

noted, the normal fi points into D+ from Co’ Cf, CB’ and into‘BL from Cw‘ We dennte

points (vectors) by p = (xp,yp,zp) and q = (xq,yq,zq) with cylindrical coordinates

p = (pp,ep,yp) and the subscripts will be omitted if there is no danger of confusion.
We formulate the floating body problem ag follows:

Find a function

2 o
where C® (1) is the space of functions with m continuous derivatives on Q, such that,

v% = 0 peD, (1b)

G-t

.




where V(p) is integrable on Co.

2w -o(zL5) o an

where ko is the root with largest real part of the equation

kn sinh knh = k cosh khh (2)

Some properties of kh are listed in Appendix A; here we only remark that there always
is such a ko with a real part that is strictly positive.

Finally we add a condition on 3¢/3n which will enable us to employ Green's
theorem, namely, that 3¢/9n defines a distribution in c°*(an ) (the space of func-
tions of bounded variation) in the sense of boundary flow (see Burago, Maz'ja and
Sapoznikhova,a Wendland, 6 and Kleinman and Wendlandla
Roughly this means that

for a more detailed discussion

of this concept).

lim u~%$ ds
3D_+3D n
m +

oD
m

defines a bounded linear functional on C° (an ) (continuous functions on 3D ) where
u € c (.R3) (infinitely differentiable functions with compact support in .R3) and
3D is a family of smooth surfaces in D converging to 3Q+. We note that, if (3¢/9n)

1
loc

é(p) € “1°c (D,), that {s, I {|¢|2+IV¢| }dt < ® for every bounded subdomain peo,.

€ (BD ), it will have boundary flow. Alternatively, we could require that

This would also enable us to euploy Green's thoorn-. Kleinman and thdland have
shown that, if ¢ has boundary flow, then it is in nma; ). The given data V will
be interpreted as defining a boundary flow which it will do 1f, for ex:nple, Ve
11(C). Here, L'(2) s the space of (Lebesgue) integrable functions on ; H: @ 1o
the space of functions which, together with their first derivatives, are in L «Q);
and Lloc(n) is the space of functions integrable over every bounded subdomain of Q.
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UNIQUENESS
The first important property ve establish concerns conditions under which the

problem, Equations (la)-(1f), has a unique solution. We remark that John proved
uniqueness by requiring that Co was smooth (Cz) and that rays perpendicular from CB
intersect Co at most once. In fact, he requires Co (or cotjco) to be convex. Here
we will establish two versions of the uniqueness proof. In one we require the waves
to be dispersive, that is, Im k > 0, in which case uniqueness is established for the
plecewise smooth boundaries described earlier. The second deals with nondispersive
waves, Im k = 0, and requires an additional assumption that vertical rays from Cf
(not CB as in John's proof) do not contain points in D_. In either case, we make no
convexity requirements and permit nonnormsl intersections of Co and Cf. We note that -

the 'assumption of a small imaginary part for k has ample precedent (e.g., Lighth:lll15

and Noblesse.16 Also, it should be noted that Lenoir and Hart1n17 have presented a
uniqueness proof for real k in the case of infinite depth which requires no geometric
restrictions. Their method, however, does not appear to be immediately extendable

to finite depth. In fact, Ursell18 has shown that their proof is incorrect.

Uniqueness Theorem:

1f Co is piecewise smooth and Im k * 0, the homogeneous floating body problem
has only the trival solution; that is, if

V2¢ =0, p€ D+ %%-- 0, pe Co

3 3¢ - 1

Iy~ W0 el 3p-ikp ° (7172) @
9 . 2 0 :

'é% =0, peCy $eC )y C (D, ,,3D)

and 30/3n exists as a boundary flow even though it is not defined at cormers, then
L

intersect D_.

0. The theorem remains true if Im k = 0, and vertical rays from Cf do not
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Proof:

5 Assume ¢ satisfies Equation (3). Since ¢ is continuous in c° ®, 2D,) and has
‘a normal derivative in the sense of boundary flow, we may still apply the divergence
theorem (Burago and Maz‘ja)19 to ¢V§ - $V¢ in D, Dg» vhere D = {p|p<R} 18 a
cylinder of radius R; and ¢ denotes the complex conjugate, thus obtaining

j (6925392} dt = -I {cb %?‘L -3 g%} ds (%)
D Dy Ce uCouCaulr

where fi points into D,. Because ¢ satisfies Laplace's equation, the integral on the
left vanishes and the boundary conditions cause the integrals over co and CB to
vanish as well. Employing the boundary conditioum on Cf and the fact that on BDR,
9/on = - 3/3p, we obtain

J' (k-k) |¢(2 ds+I (¢%%—$%%)ds—o (5) ?
Ce )
The radiation condition implies that on GDR
3¢ 12 3% . ¢ /
5 - kg = (3% - 1k°¢) (53+ 1k°$)
2
- ,g% +|ko¢|2+Imko(¢-g%+$%%)+ikeko($%—¢%) (6)
1 1
- o(3)= o (3)
hence,
2
« 3¢ 3 _ 1 3¢ 2 3% ) 1
"'5'6'65'6 TRek, "é’é’ +|ko¢| +mk°(¢-5-5+$5%)}+o(p) €)]
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Substituting in Equation (5) we obtain

I -k |6)2 d.+ﬁi-k—j {
°

2 .

Cc
f R
as R+= (8)

or

2
2 Im kj |$12 as + Rtk f {lg% + |k°¢[2+1m K (¢ %%4- 62%)} ds = o(1)
[o]
Ce g as R+ (9)

From property 4 in Appendix A we know that if k ¥ 0, then Reko > 0. Equation (9)

may be written as

2
2 Inm kj 162 ds +§-¢1§; ‘(Reko)z 162 + (m k, Red + Re %%)
c, aD,
+1k1m¢+1miﬁ)2d- 1 10
(1m &, 52) {48 = of a0

Since Im k > 0, then all the terms on the left are nonnegative, and it follows that

individually they vanish as R +~ «©. Thus,

1812 ds = o(1) > ¢ = o (5373) an

SDR

which, together with the remaining relations, ensures that

%o a2

and
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In kJ' 1612 ds = 0(1) | (13)

Ce

But the last expression is independent of R, hence

mkI 16]2 ds = 0 (14)

Ce

Equations (11) and (12) imply that ¢ 3¢/3n -+ 0 on D, as R + =, hence we may apply
the divergence theorem to §Vé in D, , obtaining

-f | 552 e -J [v6]2 ar (15)

Cou CsuCn D,

which, with the boundary conditions, reduces to

kJ. 1612 ds -J V|2 ar (16)
C, D,

If In k > O, then Equation (14) implies that I l9]2

Ce

I |v¢]% dat = 0
D,

ds = 0 and, therefore,

Thus ¢ must be constant and, by Equation (14), the constant must be zero and the
theorem is proven. If Im k = 0, Equation (14) gives no information and Rquation
(16), although still valid does not imply that ¢ = O since k has the "wrong™ sign.
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To prove uniqueness, when Im k = 0 we follow John's argument and impose the
additional restriction that every vertical ray from the frge surface contains no
points of D_; that is, if (x,0,2) € (:f then (x,y,z) ¢ D_, for -h <y < 0. This re-
striction means that the projection of D_ on the y = O plane is Cw, the waterplane,
as illustrated in Figure 3a. We introduce additional

Figure 3a - Permissible Configuration Figure 3b - Impermissible Configuration

Figure 3 - Restricted Geometry for Im k = 0

notation setting D1 to be that portion of D+ that may be reached by vertical rays
from Cf and, following John, we have the representation

¢ = Z an(x,z) cosh kn(y+h) for p € D} (17)

n=0

where kn are the roots of Equation (2) with nonnegative imaginary part. Using Equa-
tions (17) and (2) we may show, by elementary integration, that

0 " sioh 2k b
J‘ ¢(x,y,z) cosh ko(y+h) dy = 3 ao(x,z) (1+ —-ﬁ-o—h——) (18)
~h

wWith the Schwarz inequality we find




P .

2 o 0
gj |12 dyj cosh? k_(y+h) dy

sinh 2k_h
}e. (v S5)

Z% %&b
. =h <h
therefore. there is a constant C (- ;—E—%‘?‘——) such that
+h
2k°
0
la (x,2)|% < CI 1012 ay

=h

Integrating Equation (20) around a circle of radius R we have

2n
[ nai? e ccf 1ol e

0 BDR

and letting R + =, using Equation (11), it follows that

2n
lim 2
MJ‘ Rlaol de = 0
0

Since

n 380l o o
2

wvhere Hl(:f are Hankel functions,

1

19)

(20)

(21)

(22)

(23)

e



s 1 oS-+

4

2n
11-[ xl.olz ® = linj
R dy Ro sy

2 o
2
E (1) inf
R Bn uln‘ ) (koR) e
n.‘

de

- in 2R Z le_1? ‘ll(l)(k B (26)
n-..m
=0
from which ve infer that
B'n =0 for' tvery n - (25)
hence,
a =0
o
and
0 -
J ¢ cosh ko(y+h) dy = 0 (26)
=h
Integration by parts leads to
0
¢ (x,0,2) sinh koh -j ¢y sinh ko(y+h) dy @n
-h
hence,
0 0
|6 (x,0,2) stnh k|’ 5j lo, |2 dyj stnh? k (y+h) dy (28)
=h -h '




Since, from Bquation (2),
| |
° ' stah khcosh kh ,  simh’kh .
I sinh ko(”h) dy - ﬁo — -2— - n - i (29) Tj
-h
ve have, with Equation (28),
. 0 0
’ 2 |4(x,0,0)|2 :I Io,lz'dygj 9612 & (30)
; -h ~h
Integrating over (:f we obtain
2 2
| ij [¢]€ ds ij |V8]€ ar (31)
S Cf Dl
3 iv
: and, with Equation (16),
zj jvp2 ar :j {9612 & (32)
D+ Dl
or
2 2
I 9]¢ ax +I |9$|€ dr < 0 (33)
Dy R
from which we infer, since both terms on the left sre nonnegative, that V.= 0 in D ,
. hence ¢ = constant. But, then 2¢/3n = 0 and the free surface m&mﬁ implies that
¢ = 0 completing the proof. Ve note that the proof would be essentially unchanged
. if, instead of Nlan-o.\nhuIO-Oonco.




INTEGRAL EQUATION FORMULATION =~ & . %) Lo
Again we follow John and introduce the Green's function for the limiting
when D_ is empty and C; is the entire y = O plane. Thus, define

case

x2-x2)eV  T)
(p,q) := -1 B L h k (y +h h k_(y +h
v(p,q) : 2, 3 cosh k, (y +h) cosh k (y +h)

2
e hk-hk
(34)
[}
N 1 ) . cosh py> + k sinh py>
’ ‘"4; Jo (UR) cosh u(y< + h) W sinh puh - k cosh ph du
0
where y> = max {yp,yq}_i 0 and y< = min {yp,yq}_i -h;
-~ 2 2
R= / - + -
(xp xq) (zP zq) (35)

Here kn are the roots of Equation (2) with nonnegative real and imaginary parts,

and the contour passes below the zeros, U = kn, of the denominator. It is not diffi-
cult to see that y satisfies the radiation condition and boundary conditions,

9 9
%-O.y--hand%-kv-o,y-o (36)

John has also shown that the singular behavior of y is given by

S S
arjp-q|  2r|p-g] 2r|p-q,]

Y= - + H(p,q) (37)

vhere H = 0(%n|p-q{) O(in|p-q,|)
q - (an"‘yqozq)
ql - (xq.'-yq-Zh.zq)

14

o




We now state Green's theorem for solutions for the floating body problem using the
Green's function defined in Equation (34).
If
V2¢ =0, peD
’ +

CRRN

8—¢-’0’y--h

dy
3¢ -
'gy-‘l@ otpecf

Im k > 0

and 9¢/dy exists at least in the sense of boundary flow, then

f )Mq) —Y—M’— - Y, 3| ds = - atp) 0P (38)

n
q

0

where ﬁq points into D and

2, pe D, ,Ce, Cy
a(p) := lim %%— dsq = ¢ 1, p € smooth points of Co (39)
q

The fact that a(p) = 2 on Cf and cB rather than 1 is a consequence of the form of v,
Equation (37). Here Be(p) denotes a sphere of radius € with center at p, the normal
points away from B_(p) and c; and C; are primed to denote that the boundary points
between Cf and Cw are not included. It should be noted that a(p) is defined at non-
smooth as well as smooth points and is a measure of a normalized solid angle, al-
though the explicit evaluation in Equation (39) holds only at smooth points.

We also state a version of Green's theorem for solutions of Laplace's equation
inD_: If V2$'- 0, p€ D_ and 5378n exists at least as an interior boundary flow

(approximating surfaces lie in D_), then

15
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c

f “&q) H@aa) %‘H ds, = [2-a()] T - 40)
q q
OUCW

B s inai o AU

where ﬁq points away from D_.

Since Bylanq = ky on Cw’ this may be written

f r(q) R T ~f Y@, (2—3— -k?) ds = 21 TG) (1)
c q q C q
o w

In particular, if $'= 1, we get a form of Gauss' integral

J-g-}l—dsc[-i-kfydsqu-a(p) 42)

C q I
[s] w

It should be kept in mind that both Equations (38) and (42) hold for points p in the
slab -h < yp_ﬁ 0 since, as yet, we have not defined y outside of this region. With
} the boundary condition, Equation (le), and Equation (38), we have the boundary

integral equation

a(p) b(p) +f o) ) gy =f V(@) Y(pa) s, for p e C . (43) :
. _‘

C C
° o

aa

where a(p) = 1 at all smooth points of Co. Alternatively, we could multiply Equa-
tion (42) by ¢(p) and add it to Equation (38), and use Equation (le), to obtain

2 6(p) +j [5(2)-0(p)] L2} s - k¢(p)f Y(p,q) ds
9 c

c
o w

;. = [ V(q) Y(p,q) dsq for pe D, 3D (&)

o
C -
o
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This is a form derived by !loblease16 and is the analog of the formulation for the
Helmholtz equation derived by Ahner and Kleinman,2?
does not change form when p is on the boundary of D+ even if p is a corner point.
If we restrict p to lie on Co, both Equations (43) and (44) are integral equations
for the unknown values of ¢ on Co. As John showed, there exist irregular values of
k, that is, those values for which

Observe that the representation

a(p) u(p) + j OB forpec, —(45)
. ) .
[}

has nontrivial solutions. We note that if u is a solution of Equation (45), it is
also a solution of the homogeneous form of Equation (44). Note also that since a(p)
= ] almost everywhere on Co, Equation (45) may also be written

alp) u(p) +J’ a(q) u(q) 3 (n ) dsq =0 for p € Co (46)
q
Cc

(V]
and so, even if Co is only piecewise smooth, the irregular frequencies are those for

which there exist piecewise continuous nontrivial solutions of

v(p) +J v(p) ?I.L%ﬁl ds = 0 forpec, (47

vhere we have replaced a(p)u(p) by v(p). Adopting the notation of Kleinman and
mruc:h9 we introduce the boundary integral operators on C o

Kv :-J v(q) 2y (pq) ds for p € (:o (48)

9
n q

P




,
L !
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i

Rev :-f v(q) ngg‘-ql daq forpe C,  (49)
c q '
o

so that Equation (47) may be written

(I+K*) v = 0 forpeC  (50)

In order to proceed we recall the jump properties of single and double layer
potentials: 1if u is continuous on Co (actually Ll(co) suffices), then

Um, 5= ] u(@) Y(p,q) ds, =+ u(p) +j u(q) héﬁ‘ﬂl ds, (51a)
o o
lim, I u(q) g—%‘-ﬁ ds_ = + u(p) +I u(q) 375(1’-& ds (52a)
P*C, CO " 1
o C
o Q

where :i‘::t means that p approaches Co from D 4o Since Co may have corners, Equations

[+
(51a) and (52a) hold almost everywhere on Co; gee Lemma 4, Appendix B). The fact

that v is given by Equation (34) rather than merely being the fundamental solution
Yo = = 1/ (21r|p-q|). does not alter these properties, since vy - Y, is regular in D

D, and Co. That Co is not closed is of no consequence provided C is plecewise Lia-
punov and satisfies a cone condition. If we further restrict C so that it is mde
up of segments lying on Liapunov surfaces of Holder index 1 (Iﬁ (p-q)|<A|p-q| ),
then Lemma 6, Appendix B assures that if one of the derivat:lvu

_3_.’..“- u(q)_léh.q}. ....__.J- u(q)_ﬂbﬂld.
c

in
PC Po
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exists for p € co, then the other does also and they are equal. We will henceforth %
assume that this slightly stronger smoothness requirement is satisfied, which still
allows for corners and edges.

It will be useful to add the jump conditions for layers defined on C . If ulis
continuous on c (again L (c ) would suffice), then, since q = q (see Bquation an),
the singularity at q is doubled in strength and

._ Y(p,q) = - + 0(fn|p-q|)
; | p-q|
!
i hence
i lim_ = w(@) Y(p,) ds, = - 2u(p) +| u(q) VLLR2A) g (51b)
; poC on q : 3n q
w P C C 9
Y] W
.
L 1im I u(q) DR g = 20(p) +f ulq) A2 4, (52b)
: - n q on q
] 1 - -
1 1
. 1 where p approaches Cw from D_, since we have not, as yet, defined Y(p,q) outside the
] E slab -h < yp(yq) < 0. The normal on cw is taken to point in the positive y
h B 4 direction.

Another way to arrive at boundary integral equations for the floating body
problem 1is to assume that a solution is given in the form of a single layer with un-
known continuous density on Co.

1 ¢ (p) =-I u(Q) Y(psq) ds for pe D, (53) |
108 )
[+ ]




e,

Then, with Lemma 1 in Appendix B we see that ¢ i{s continuous to the boundary (we may
define u = 0 on QD;\CO). Also, ¢ satisfies: Laplace's equation, Equation (1b); the
free surface condition, Equation (lc); the boundary condition on Cg» Equation (1d);
and the radiation condition, Equation (1f). Moreover, with Lemma 9 of Appendix B we
can show that ¢ € H (D ). Finally, to satisfy the boundary condition on Co we
take the normal derivative, use the jump relation, Equation (5la), and arrive at the

integral equation

u(p) *:[ -u(q) éx%ﬁlﬂl dsq = V(p) for p a.e. on C, (54)
P

c
o]

or, with Equation (48),
(I+K)u = V for p € Co (55)

Following Kleinman and Roach,9 we call those values of k for which (I+K)u = O has
nontrivial continuous solutions irregular or characteristic values of -K and values
of k for which (I+K*)u = 0 has nontrivial solutions, we call irregular or character-
istic values of (~K*). Actually, Kleinman and Roach9 (see alao Angell and Kleinmanlo
for clarification) treated solutions in L (C ) for smooth closed C in which case it
is known that solutions of (I+K)u = 0, which lie in L (C ), also are continuous.

In the present case we will consider continuous or piecewise continuous solu-
tions in order that normal derivatives of double layer distributions satisfy Lemma 6
(Appendix B). If K is compact, then these irregular values are the same. However,
K is not compact in the space of continuous functions on Co if the surface is not
smooth. Nevertheless, some of the features of compact operators are retained. To
see this we first define the adjoint floating body problem as the following interior
problem: Find ¢ € c? (D_) with interior boundary flow or in Bl(D_) such that

for p € D_ (56)

for p € cw (57)




IR e

L

Theorem 2: If k is an eigenvalue of the adjoint floating body problem, then k is a_

Proof: Assume k is such an eigenvalue so that there exists a nontrivial function v_

= for p € Co (58)

where f igs a given function. . u
Further, those values of k for which a nontrivial $'exists, such that Equations

(56)-(58) hold with f = 0, will be called eigenvalues of the adjoint floating body
problem.

We now prove:
Theorem 1 - The eigenvalues of the adjoint floating body problem are real.

Proof - Assume u is an eigenfunction. Then Green's theorem implies

3w _ o du) . (59)
J (uan—uan)ds 0

and, applying the boundary conditions, we get

f &-%) |u|? ds = -21J' Imk |ul®ds =0 (60)
C C
w w

hence, either u = 0 or Im k = 0. However, if u = 0 on Cw’ then since u also vanishes 4
on Co’ u is an eigenfunction of the interior Dirichlet problem and it is known that
there are no nontrivial solutions of this problem for the Laplacian. Hence, Im k = 0

which proves the theorem. Next we prove:

characteristic value of -K.

defined in D_ which satisfies Equations (56), (57), and (58) with f = 0. With
Green's theorem, Equation (40), we have

v
2v_ -j (v-%tY\—-YTn;) ds, for p € D_
cC C q q
oU'w
(61)
f Y(P.q) ds, for p € D_
C q

21
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where the boundary conditions on Co, as well as the fact that both y and v_ satisfy
the free surface condition on C“ have been used. Now, taking the normal derivative
and using the jump conditon of Equation (5la) we obtain

ov_
2 ———-- 5—— Bn 3—— ds for p € C° a.e. (62)
o
or, with Equation (48),
ov_
(I4K) el 0 for p € Co (63)

Since both v_ and av_/an cannot both be zero on Co because v_ is assumed a non-
trivial solution of the Laplacian in D_, it follows that k is a characteristic value
of -K. Furthermore, we can also show:

Theorem 3: If Im k > 0 and k is a characteristic value of -K, then k is an eigen-
value of the adjoint floating body problem.

Proof: Assume (I+K)$ = O has a nontrivial solution ¢. Then define

v, :-I $(q) v(p,q) dzatq for p € D (64)

c
°

The jump condition, Equation (51a), then shows that

8v+
¥ = (I+K) ¢ = 0 (65)
and hence, the Uniqueness Theorem guarantees that v, = 0 for p € D Now let
v_ :-J ¢(q) v(p,q) dsq for p € D_ (66)
(o

(o)




Since the single layer is continuous scross C (Lemma 1, Appendix B), it follows

that v_ = 0 on Co and, because of the properties qf the Green's function, either v_
is an eigenfunction of the adjoint floating body problem or v_ = 0 for p. € D_. The
latter possibility is ruled out since, if v_ = 0 then Bv_lan- = 0 and, with Equations
(51la) and (48), we would have

av
x— = + Kb =0 for p e C, (67)

With Equation (65) this would imply ¢ = O contrary to the assumption, thus proving
the theorem. Theorems 2 and 3 establish the equivalence between eigenvalues of the
adjoint floating body problem and characteristic values of -K. We can also obtain

some relations, though not as complete, for characteristic values of -K* as follows.

Theorem 4: If Im k > 0 and k is a characteristic value of -K*, then k 18 an eigen-

value of the adjoint floating body problem, hence also a characteristic value of
(-K).

Proof: let ¢ be a nontrivial solution of (I4E*) ¢ = O and p € Co. Such a ¢ exists
since k is assumed to be a characteristic value of -K*%.

Define:

v_ :-I $(q) 3_Y§%._g)_ dsq for p € D_
q

c
o

Then, using the jump condition, Equation (52a), we see that v_ = (14K*) ¢ = 0,
Hence, because of the properties of Y, either v_ is an eigenfunction of the adjoint
interior problem or v_ = 0. The latter case is ruled out by the following argument.
If v_=0 for p e D_, then 3v_/8n- = 0 on Co'

Now define

. CAKS
vt f $(q) -13%;31 ds(l for p € D

CO

and use the continuity of the normal derivative of the double layer (Lemma 6,
Appendix B) to deduce that




-3;—"0 A fotp€C°

Then v, = 0 forpe D+ from the Uniqueness Theorem and in particular, from Equation
(52a) >

v, = (-1+K*) ¢ = 0 for p € C_

Since it is also true that (I+K*) ¢ = 0, it follows that ¢ = 0, contrary to assump-
tion, thus establishing that k is an eigenvalue of the adjoint floating body problem.
Application of Theorem 2 completes the proof,

UNIQUELY SOLVABLE INTEGRAL EQUATIONS

We saw in the previous section that the integral equation formulation of the
problem led to equations which were not uniquely solvable at irregular frequencies.
Here we present two methods for modifying these equations to regain unique solvabili-
ty. One method involves modifying the domain of the operator, whereas the second
involves modifying the operator on the same domain.
Method 1: This method involves the use of Equation (38) not only on Co’ but in D_
as well. 1In scattering theory this is sometimes called the extended boundary con-

23 and has been used in

dition method (see, e.g., Kupradze,21 Schenck,22 and Waterman
slightly different form in the present context by Chang and Pien.7 First we prove:

Theorem 5: If u is continuous and bounded on C° and

NP 4. -
J. u =5t dgq 0 for p € D_qu (68)

C q

o
then u= 0 on Co'
Proof: let

n 3y(p,q)
¢_ J‘ u anq dsq for p € D—Ucw
c )

o




and, using Equation (52a)

4 (69)

lim_ ¢_ = 0 = u(p) +'J. u(q) §I§2¢ﬂl ds for p a.e. on C
P"C- - n q [o]
o Co

Now define

¢, :-J- u(q) EY_a(%;_L) dsq for p € D_

c
°

With Lemma 6, Appendix B, on the continuity of normal derivatives of the double

layer with continuous density, we have

3
+
——7'_--0 forpeco

an

hence, ¢ + is a solution of the homogeneous floating body problem and by the Unique-
ness Theorem, ¢+ = 0 for p € D_. Again, with Equation (52a) we have

~u(p) +I u(q) 91%—‘1?- ds = 0 for p € C_ a.e. (70)
q

c
o
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Theorem 6: If u is continuous and bounded on Co

Subtracting Equation (70) from Equstion (69) establishes the theorem. This means .
that

c
o o

f ¢ (q) ﬁ%";ﬁ doq -I Y(P,q) V(q) dsq for p € D_ C (71)
C

has, at most, one solution, but the equation still presents problems since the domain

and the range do not coincide and the range is all of D-Ucw' Howaver, we can im-

prove things somewhat by applying Equation (38) only on the boundary of D_ and

establish

u(p) + f u(@) 2D g5« 0 for pe €, (72)
c q
[¢]
and
f u(q) ﬂéﬁ—ﬂl ds =0 for p € C, (73)
; q
[+

then u = 0 for p € C° We use C; and C; to denote the smooth parts of C° and Cw‘

Ucw .

Proof: Assume u is a solution of Equations (72) and (73). Define

$_(p) =-I u(q) 37(p,9) ds for p € D_  (74)

Then, since u is assumed continuous, with Equations (52a), (72), and (73) we see that
¢_=0forpe coucw‘ Hence, ¢_ = O for p € D_ since there are no eigenfunctions
of the interior Dirichlet problem for Laplace's equation. Then the previous theorem 5




shows that u = 0 on Co. This theorem shows that even though k may be an irregular
frequency, which means that Equation (72) may have nontrivial solutions, by adding
the additional requirement of Equation (73), then uniqueness is assured at all fre-
quencies. Thus, the inhomogeneous integral equations in the form

3y ( - .
$(p) +J; $(q) —%ﬁ:ﬂ d-q Jc V(q) v(p,q) d-q for p € c, (75)
[+ [+

and

f ¢(@) ﬂéﬁ:ﬂ ds, -_[ V@) Y. d8,  for pe € (76)

c
o °

have, at most, one continuous bounded solution, ¢(p) for p € C,- We defer a proof
of existence of a solution of these equations. These equations still suffer from

& the drawback that the unknown function ¢ is defined on Co. but the equations must be
satisfied on Coucw' A more usual equation of the second kind with a kernel whose
domain and range are the same may be obtained through the use of the following.
Theorem 7: If U(p) is continuous and bounded on C,» and

2 Tp) +I Q) 91%'-91 ds, = 0 for p e €, (77)
c q
w

A

then u(p) = 0. Here nq points from Cw in the positive y-direction.
Proof: Assume U satisfies Equation (77) and let

-~ - a
$ :-I u(q) —Yég-'ﬂ dsq for p € D-UcouD+

q
" %

_—

Then, because of the properties of Yy, we se¢e that 3' satigsfies Laplace's equation in
the slab, ~h < y < 0; the free surface condition, Equation (lc), on Cf; the

27
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homogeneous Neumann condition, Equation (1d), on CB; the radiation condition, Equa-
tion (1f); and, because of Equation (77) and the jump conditdion, Equation (52b),
$-0forpecw. -

Now apply the divergence theorem to ¢ V¢ over D +UcouD— using the above re-
lations obtaining

J (v$]2 ar = -I TR 4 - kj 1312 ds (78)
Dyip®- Ce Ce

Now we follow precisely the part of the uniqueness proof following Equation (16),
since ® defined above is of the form of Equation (17), and conclude that

-~

$=0 for for p € D+UcouD-

Moreover, since Y satisfies the free surface condition on y = 0 we also have

T-0= kI T@ Y, ds for p € D_ (19)
C
w
or
J. uiq) Y(p,q) ds = 0 for p € D_ (80)
C
w

Now take the normal derivative form D_ using the jump condition, Equation (51b),
obtaining

-2 ulp) +J‘ u(q) §I_§%ﬁl dsq =0 forpeC, (81)
(o P
w

But with the representation of the Green's function, Equation (34), we see that,
forpandqecw (»yp-yq.o)

28
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%1_ - N E ngl) (%) sish kh cosh kb (82)

Thus, Equation (8l) can be written

-2 Up) +I T(q) EY_%SQ dsq =0 for p € C; (83)
C q

w

which, with Equation (77), {mplies that u(p) = O for p € Cw, thus establishing the
theorem. This theorem shows that if Equation (77) holds, then necessarily

f?.’(q)-alébﬂlds -0 for p € C_ (84)
nq q o

C
w

Now combine Equations (75), (76), (83), and (84) and define
¢(p) for p € C,

o(p) := (85)
U(p) for p € c,

to obtain simply

*(p) +J. B(a) 9(q) 91-5‘5;-‘1’- ds, -I V@ Y(p.a) ds (86)
Coucw Co for p € C;ucg
1l for q € Co

vhere 8(q) =
1/2 for q ¢ Cw

29




Equation (86) is of the desired form and if it has a unique solution, then the re-
striction of ¢ to Co is the solution of Equations (75) and (76). It remains then |
to verify that Equation (86) has, at most, one solution which is the content of:-
Theorem 8: If ¢° is piecewise continuous on CoUCw and 1

5, @) + f B(a) (@) ﬂéﬁ;ﬂ ds =0 forpec,C (&)

Co Ucw

then & =0
o

Proof: Assume Oo satisfies Equation (87) and define

. aY(p,q)
v_: .I 8(q) Oo(q) —15%:3— dsq for p € D_ (88)

coqu

Then, using the jump conditions, Equations (52a) and (52b) and Equation (87), we
i ' find that v_ = 0 for p € 3D_. Hence, v_ ~ 0 for p € D_ since the interior Dirichlet

f problem has no eigenfunctions. Thus,

! v
S S s -
] I-.. ; T 0 for p e Co (89)
Now define
- 3v(p,q) {
v, j B(a) ¢, (a) -155-;-‘1- ds, for p € D_ (90)
r

CO Ucw

Since v, is a double layer with piecewise continuous density, we may invoke Lemma 6,
Appendix B, to see that

| 3V+ 3V_

t Ti—-.rn--o forpeCo (91)
[

|
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But then v . is a solution of the homogeneous floating body problem and the Uniqueness
Theorem then implies that

‘v+(p) =0 for p € D+ (92)

Taking limiting values as p * Co we have, with Equation (52a), ;

- 3Y(p,q) -
v_=0forpeD >0 +f B(a) ¢_(a) —15{"—;3- ds_ = 0 (93)
CouCu for p € C
and
1
m 3y (p,9) -
v, 0 for p e D+=> —@o +f 8(q) ¢o(q) _&%qﬂn- dsq 0 (94)
Coucw for p € Co

from which we deduce that Qo =0 forpet Co. Using this result in Equation (87) we
have

2 0, (p) +f %, (@) a—Ya‘%;ﬂ’- ds = 0 for p € G (95)

C
w

sy

But then the unique solvability proven in Theorem 7 implies Q’O(P) =0 for p e Cv.
Hence, Qo(p) = (O for p € Cou cw’ thus establishing the theoream.
To summarize the results of this section: If ¢(p) is a solution of the floating
body problem Equations (la)-(1f), then on C_, ¢(p) = #(p) for p € C_ where ¢
satisfies the equation {

*(p) +I JORIGEE UL P -I V(@) Y(p,a) da (96)
c q

c. C - »
oU w o Eorpecwcw

and this equation has, at most, one solution.

3




oo

An alternate form of the equation may be derived when V(p) is the normal deriva-
tive of an interior potential; i.e.,

v(p) = - %%- for p € C, (97)

For example, in heaving motion V = -fi ¢ §, hence‘s'- y + C. When Equation (97)
holds, we may use the Green's identities, Equations (38) and (40), to write

J {[¢(q>+$'(q)1 N2 _ y(p,q) w2 (6(a)4F(@)] } ds,
c q q

o

=230 - o) (FE)+E)] +J [m:,q) L) ?—Y-aﬁg-‘ll] as, (98)
q q

C
w

Now define
¢,(p) = 6(p) +F(p) (99)

and use the boundary conditions on Co and Cf to obtain the representation

ap) ¢, (p) +I 0, (@) 222D a5 = 2 Fp) +f Y(p,) [?,%:— - k?(q)] ds,  (100)
1 c
o

c q
W
The representation in Equation (100) is valid for all points in the slab -h < y < 0.
The major advantage of this form lies in the case of heaving motion where we
may cause the integral over the waterplane to vanish by choosing the constant in

$'appropriate1y. namely

3'- y -1 (101)




Then, Equations (75) and (76) become

o, (» + J 0@ AP gg -2 (y-3)  forvec) ao
q
C
j ¢t(q) h‘-é%:‘)— dsq - -—% for p € C; (103)
co
whereas, in place of Equation (96) we have,
3Y(p,q) - 1
®(p) +j B(a) 2(@) —3\;—;3— ds = 2 (v =) (104)
Cou® for p € C;UC"’
where
o(p) = ¢'t(P) for p € C_

Method 2: A second method of obtaining an integral equation with, at most, one solu-
tion which does not involve extending the domain of the integral operator is pat-
terned after the method used in acoustic scattering problems by Burton and Miller,
Kleinman and Roach,9 and Angell and Kleinman.lo Again we start with the representa-
tion, Equation (38); evaluate it on Co; take the normal derivative from D+, using
Equations (51a) and (52a); and obtain the pair of equations

8

é(p) +I $(q) _Q_Y_é%,jl dsq -J. v(q) v{(p,q) dsq forp € C; (105)
q c

c
o o

and

a—:— ¢(q) iyéﬁ-'ﬂl ds, -f v(q) 3’-.%;3)- ds_ - V(p) (106)

Pe q
° ° forpec;
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Since V is assumed to be in L (C ) then Lemma 5, Appendix B, ensures that the normal
derivative of the right-hand side of Equation (105) exists in L and since 3¢/on is
also assumed to exist (3¢/3n is equal to V), then two of the three terms in Equation
(38) have normal derivatives from D,, hence the third term also must have a normal
derivative. 1In addition, since ¢ is assumed continuous, Lemma 6, Appendix B, en-
sures that the normal derivative of the double layer,

3y (p,q)
sn— $a) ot dsg
Pc
(o]

exists almost everywhere on Co and is the same whether we approach Co from D+ or D .
Hence Equation (106) is obtained even though Co may have corners. Denoting this
normal derivative by Dn’ i.e.,

o [ o 2P0 4 (107
C
(o]

we may rewrite Equations (105) and (106) as

(I4+K*)¢ -.I v(q) v(p,q) dsq for p € C; (108)
C
o

Dn¢ = KV -V for p € C (109)

Alternately, if V(p) is the normal derivative of an interior potential, Equation
(97), then we may differentiate the representation of Equation (100) in the normal
direction, obtaining

3 3y (
m—j be(@) =54
P q

Yo w

) ds, = -2 V(p) +J fp,q) (%ﬁ— -123') ds, (110)
p q

for p € Co

and the pair of boundary integral equations become
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(%% ¢, = 2 3 +J Y2, (—3—?;— -mq)) ds for p € C; (111)
q

c
w
D b, = -2V(p) +I 91%%;—‘11 (%i—q —k?(q)) ds, for p € C (112)
c
w

As with Equation (100), we remark that this form is convenient in the case of
heaving motion with 3 =y - 1/k in which case the waterplane integrals vanish. It
is the pair of equations, either Equations (108) and (109) or Equations (111) and
(112), which will be shown to be uniquely solvable. First we observe:

Theorem 9: If k is not an eigenvalue of the adjoint floating body problem and ¢ is

a plecewise continuous solution (in the closure of Co) of

(I4K*)d =J V(q) v(p,q) dsq for p € C; (113)
C
o
then
Dn¢ a KV -V for p € Co (114)

Proof: Let ¢ satisfy Equation (108). Then define

v_ :=j ¢ (q) 3_Y3(_§_._g_)_ dsq —J V(q) v(p,q) ds“1 for p € D_ (115)
q C
o

C
o

and use the jump condition, Equation (52a), to see that v_ = 0 on Co and, in fact,
that either v_ = 0 for p € D_ or v_ is an eigenfunction of the adjoint floating body

problem. But, since k is not an eigenvalue of this problem, v_ = 0 for p € D_ and

hence has a normal derivative from D_. The term

J’ V(q) v(p,q) clsq

CO
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v,

also has a normal derivative, Equation (5la), hence the normal derivative of the
double layer exists and the theorem follows.

Thus, if k is not an eigenvalue of the adjoint floating body problem it is suf- .
ficient to solve Equation (108). A similar argument shows that under the same '
assumption on k, it suffices to solve Equation (111).

It remains to show that regardless of the value of k, the pair of Equations
(108) and (109) or Equations (111) and (112) are uniquely solvable. In this section
we concern ourselves only with uniqueness and prove

Theorem 10: If Im k > 0, the only piecewise continuous solution of the pair

(I4K*)d = 0 (116)
Dn¢ = 0 7
is ¢ = 0.
Proof: Assume ¢ satisfies Equations (116) and (117) and construzt the function
)
v, :=f ¢ (q) —Yv‘g%:&)— dsq for p e D, (118)
c
o]

Since Equation (117) is satisfied, it follows that

ov
— - 0 for p € Co

9n
Hence, v, = 0 for p e D+, otherwise it would be a nontrivial solution of the homo-
geneous floating body problem. Now take the limit as p approaches C° from D+ using
the jump condition, Equation (52a), to obtain

lim v, (p) = = (p) +J ¢(q) 91—%'-91 ds = O (119) ‘
e, c q
o

This last equation may be vwritten as




(-I4k*)¢ = 0 for p € C_ (120)

which, when used with Equation (116) implies that ¢ = O.

As a consequence of this result, it follows that Equations (108) and (109) (or
Equations (111) and (112)) have, at most, one solution. Furthermore, Theorem 9 shows
that when k is not an eigenvalue of the adjoint floating body problem and ¢ is a
solution of Equation (108) it is also a solution of Equation (109). Similarly, if
¢ satisfies Equation (111) it also satisfies tquation (112).

The question of existence has not yet been settled, however, we conclude this
section with one more uniqueness result which is advantageous from a numerical view-
point in that it involves a single integral equation in contrast to a pair. This is
patterned after a result for the Helmholtz equation by Burton and Miller.8 The idea
is to combine Equations (108) and (109) by multiplying one of the equations by a
suitable constant (or function) n and adding it to the other, thus obtaining a
single equation

(I+R*+nDn)<b =J’ V(q) v(p,q) dsq +n (KV-V) for p € C (121)

C
o

Remarkably this equation has, at most, one solution if Im n # 0. We state this as

Theorem 11: If Imn # 0, Im k = 0, and ¢ is a piecewise continuous solution of

(I+i*+nDn)¢ =0 for p € C, (122)

then ¢ = 0.
Proof: Assume ¢ satisfies Equation (122) and define

v_ :-J. $(q) _XS_E_ﬂl ds for p € D_ (123)

C
o

With the jump condition, Equation (52a), and Equation (123) we have




v_ = (I4k*) = -n D ¢ for p € C, (124)

and
ov_ 1 _
—_— N &
an Dn¢ n (I+K*)¢ for p € C° (125)

Since Y satisfies the free surface condition on C, v_ will also satisfy this con-
dition. Applying Green's theorem on D_ we get

3;_ _ dv_ _ 2
0 =J V_3a ~ V. -3;—) ds = (n-n) IDn¢| ds (126)
C

CoU w co

where Equations (124) and (125) have been used. The integral over Cw vanishes since

Im k = 0, hence v_ and ;_ satisfy the same free surface condition on Cw. Since
N -n#0onC, Equation (126) implies that

Dn¢ =0 for p e Co (127)

which, with Equation (122), also implies that

(I4+K*)p = 0 for p € C_ (128)
Now define
. 3y (p,q)
v, f ¢ (q) —Lﬁqd- ds, for p € D, (129)
c
[+]

With Equation (127) and the continuity of the normal derivative of the double layer
we find

ov
+
e A
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Thus, v, = 0 for p € D otherwise it would violate the Uniqueness Theorem. Taking
the limit as p apptoaches Co from D, and using Equation (52a), we find

lim v = (-I+K*)p = 0 i
rc + (131) i

Equations (128) and (131) then imply that ¢ = O as required and the proof is
complete.

In summary, if ¢(p) is a solution of the floating body problem, Equations (la)-
(1£) then, on Co, ¢(p) satisfies the equation

9(p) +I ¢(a) —Yg—ﬂl ds_ +n f 6(q) 20 {Ra) ds, F
q |

c pc
[o] (]

-I V(q) [Y(p.q)+n 1*—%51] ds, - nV(a) (132)
C P
o

and this equation has, at most, one solution if Im n # 0.

Alternately, 1if V(p) = -3¢/3n for p € Co where ¢ is a solution of Laplace's
equation in D_, and ¢t(p) = EYp) + ¢(p), then ¢t satisfies the equation

¢t(p)+j ¢(q)—Y-3-E31ds +n-5-—J‘ 4, (@) ‘q’dsq
0

c,
~ 3 3 o~
= 2 ¢(p) +I [Y(P,Q)'Pn -—Y%%;ﬂ] (vén—q -kd)) dsq - 2nv{p) (133)
v for p € C ;

and this equation has, at most, one solution. 1In the case of heaving motion, when

vip) = -n, = -fi * §, this becomes




Bty

A o i 5
A MR A S O s 68, 2 80 . o 0

3 9 1

b () +J‘ bl ﬁéﬁ;ﬂ dsg + 1 E;J- ¢ (@ iéﬁ:ﬂ ds, =2 (” i) t .,
c C .
° ° RET)

Having established the uniqueness results our task is not complete until we

show that the integral Equations (96) or (132) actually do have a solution, however,
this existence proof is not included here.
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APPENDIX A
A TRANSCENDENTAL BQUATION

We list here some properties of the roots of the equation defining the wave

frequencies

E kn sinh knh = k cosh knh (A.1)
Property 1: If kn is a root, then -kn is a root. ‘
Property 2: If Imk = 0 and Re k # 0, then there exist exactly two distinct real ‘
roots and an infinite number of purely imaginary roots. This was observed by Fritz
John. _
Property 3: If Im k # 0, then Re kn # 0. This may be seen by assuming that the 7

statement is not true i.e., Re kn = 0 or that kn = ixn, in which case, Equation (A.1l)

becomes

X, sin xnh = k cos xnh (A.2)

Since the left-hand side is real and Im k # 0, we find cos xnh = (O in which

.—
P

{ case, from Equation (A.2), X, sin xnh = 0 and these two equations cannot be true
s simultaneously.

; Properties 1 through 3, considered together, establish

Property 4: If k # 0, there exists at least one root of Equation (A.1) with a
positive real part.

Property 5: 1If k is bounded, then Re kn is bounded. This may be seen as follows.

Assume kn is a root of Equation (A.1), such that |kn|22lk|- Then, solving Equation
k h
(A.1) for e B we see that

e e e e ety o i e g o o e

Zkhh kn+k -anh kn—k
e = % -k and e - 'E—:._-k‘ (A.D)
. n n
from which it follows that
' 41
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2h|Rekn| < Ikn|+]k|

2 (A.4)
MR

Since the right-hand side is monotonically decreasing in lknl for lknl > 2|k| we have

2h|Rek_|
e n _<__2.Lk_.|ilﬁl. =3 (A.5)
2{k|-|k]
or
|Rek_| < L= an3 (A.6)
n' — 2h ,

Recalling that this was found under the assumption that lknl > 2|k| we see that
either Equation (A.6) holds or

[k [ < 2{k]
which implies
IRean < 2]k|
thus,
|Rek | < max ‘Zlkl, = ms} (A.7)

which establishes Property 5. Not only is Rekn bounded, but, as can be seen from
Equation (A.4),

Property 6: ‘iiT 0 Rek\'n =0
n

This helps establish




Property 7: There exists a root of Equation (A.1l) with largest positive real part.
We designate the root as k .

This follows since any bounded sequence of roots is either finite, hence has a
member with largest real part, or converges to a bounded root and again there is ome
with largest real part. The bound may be chosen, with Property 6, so that the roots
with magnitude larger than the bound have real parts smaller than Reko. Finally we
add
Property 8: If Rekn >0and Im k > 0, then Im kn-i 0. This can be seen by letting
kn -x + 1yn with x > 0 and rewriting Equation (A.1l) as

sinh kn h X sinh 2xn h-yn sin 2yn h+1(yn sinh anh+xn sin 2y h)

‘e . B (a.8)
n cosh k h 2| cosh (xn+iyn)h=2

But, Im k > O implies that Y sinh an h + x sin 2yn h > 0. Recall that X, >0
and assume that Yo < 0. Dividing by 2h X Y, yields

sinh 2xn h sin 2yn h

> b T 2y n <0
n n
hence,
sinh an h .. sin Zyn h B sin 2yn h <1
2xn h - 2yn h - | 2yn h -

which is impossible with X, ¢ 0. Hence, Y > 0 establishing the desired result.
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APPENDIX B

SOME PROPERTIES OF SINGLE AND DOUBLE LAYER POTENTIALS ON
NONSMOOTH BOUNDARIES

n

If C is a simply connected piecewise Liapunov surface, that ig, C= U ciU
i=1
n . 13
U 9 Ci’ where each Ci lies on a Liapunov surface oy (e.g., Gunter ~), then many of

i=1
the familiar properties of single and double layer potentials on smooth boundaries

are still valid as shown by Wendland.6 We list some of these useful properties here
with some indication of how they are obtained. First we define the symbols:

SH = J. v v, (p,q) dsq for p € ®3 (8.1)
C
Dy := u(q) Ezglegl ds for p € R3 (B.2)
o ° q n q .
C q
aYO (P,Q)
Ry := H(q) e dsq (B.3)
[ P for p e Ci’ for some 1
where
Yo (Psq) = - —1 (8.4)
2n | p-q|

We understand Ci to denote 4n open set on C so that corner and edge points are not

included in Ci’ but are confined to 3Ci. Note that

*
Dy = K forpe C
where
%* j aYo(p’q)
Ry := v(q) — dsq for pe C (B.S)
c q
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While 1 is defined only on C, we extend by 0 onto ¢ g that is, define

(B.6)

=0 for p € 0, \(C,, 3C,)

Also, if o, is the Holder index of the surface 0,, let a = min {ai} so that a may

serve as a common index for all ¢ i 1

Lemma 1: 1€ L7(C)= Su € ¢ (R)=> sy e LP(C) for p > 1,
Proof: Angell and l(leimunlo show that the result holds if C is Liapunov with index

a. But,

n n
S = E J' u(@a) v (p,q) dsq = Z I M @) v, (Psq) dsq
i i

i=] C i=1 o
(Bo7)
n
- 2 So1 M1
i=]1
where
8,4 ¥4 -f Hy(@) v, (Psq) d:sq (B.8)
Oy
But
T Lm((:)=>u1 e L (01)
hence

S, 4y € % @)

for each 1 as does a finite linear combination, thus establishing the result.
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%
Lemma 2: ¥ € L (C) > Ky ¢ LP(C) for p > 1.
Proof: As before, we rewrite the operator as a sum of operators

n

{ * aYo(PoQ)
' Ku= Z My (@) —7‘{;1;-—— dsq (B.9)
i=] Ci
3
Now, for any p € R
¥y _(p,q) [f_ ¢ (p-q)|
J. U, (@) —5——ds f_;— Hull o J’ — 45 (B.10)
n 9 =2 © lp-q> 9
Rewrite the integral on the right as
[f_+(p~q)| |8« (p-q)| 18 _« (p-q)|
J‘ —9-—-—-—| |3 dsq = ——(L—-—I |3 dsq +J -—9———,3 ds(l (B.11)
P-q P-q [p-q )
Cs CinBs (P) Ci\(CinBs PN

i where Bs(p) is a ball of radius § with the center at p, and we choose § to be less
{ than half the Liapunov radius of the Liapunov surface o i of which Ci is a part.

Since

|p-q| > & (B.12) i
for q € Ci\(ciﬂ Bs(p))

|8 _*(p-q)| ds M(C,)
| 3 95, < iy (B.%3)
lP‘Q| Ci\‘ciﬂBG(p)) 'P‘ql $

€, \(C4B5 (P))

where M(Ci) is the surface area of Ci‘ To evaluate the first integral on the right
of Equation (B.1ll) we consider two cases. If p ¢ Cic Oy there exist constants A !

and o such that
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W,

lﬁq° (-] < A [p-qi1*® (B.14)

hence
|8« (p-q)|
J‘ —3_T— dsq < AJ‘ J I dé —-%35_ A%
€y Bs (P lp=al C, nBs(® I""‘ 0 g (8.15)

for some A" where we used the standard method of projection onto the plane tangent
to C1 at p. Here A” is independent of p and §. If p ¢ C1 then, denoting by P the
normal projection of p onto ¢ {0 Ve have

|6 -<p—:>| s - lngj<p-p+§~q)l .
C B (p) IP'QI q C. B.(p) lp’ql 4
n°s'P 1n°s'P
—~ d A o (D
< o3l Sq . & _+ c;)l i
CinBs®@ [p-al” ¢ 5y ol 1
in "6 . (B.16)

Note that |p~p| < & even if ?¢ c, and that BG () c 326(;). Using this fact and
Equation (B.14) which holds with P replacing p,

-

|8 _*(p-q)] ds ~ |1+
I ——3—-———1 13 dsq < |p-pl ——l—l | + A | |3 ds  (B.17)
pP-q P-q > |p—q
C,Bs(®) Cin 26(9) Cm"za(")

Now we use the inequality (e.g., G'\'mteru)

1 2
i ~ 2 -~
fp=ql = (|p-Bl +IP~q

|2)1/f

to show that




gl 3 = ) YN Tlsh),;c/l.lz 2 (B-19)
- — ~ - +o _~ e~ 1 *
|p-al ([7-p|+[F=a|) (30| 4 [3=q|H M2 5 g 20
Employing Equations (B.18) and (B.19) in Equation (B.17), we obtain
|8+ (F=q)| ds
f 4 4s < 2]pF] S
e By lpmal® 9T e 5 (e Bl Fe H 2
1n °s P in~26'P
ds
+ 8A —a
~ [3=q| 2
CinBas (P
28 2n 28 2T
< ZIP‘FIJ' dof dé X + SAJ. dpj a6 ——
2 ~2 2
o Jo  UpPl 4023/ o % o
- 26
S T g
Ue=pl ™0™ | o

from which we infer that there are constant Ai and Bi independent of p and § such
that

9 (B.21)

Although Equation (B.21) was derived assuming that p § Ci, we see, with Equation
(B.15), that Equation (B.21) remains valid even if p € c- Employing the estimates
of Equations (B.13) and (B.21) in Equation (B.10), we have




W) —g—ds | <= [l o [ 5— +A B, ] (8.22)
C q L (@)L ¢ )
i ]
k:
Setting 4
M(C,)
M= 3 T —t- +a 4B, & (8.23)
]
we have finally, from Equation (B.9), that "
* e BY (PaQ)
|k ul < ‘257 W) —g———ds | < |Ju}l (B.24)
4 L (C)
=1 |c, q

* *
Thus, Y € ﬁ”(c)=$ Kou is bounded, hence, Kbu € Lp(C) for p > 1, which concludes the
proof of Lemma 2. By Fubini's Theorem we then obtain
1 Lemma 3:* u € Lp(C)=> Kbu € Ll(C) for p > 1.

Next we have
{ Lemma 4: 1If u € L1(C), then

1im 53—8u=-?u(p)+l(u for p a.e. on C
; np (o] o
p*C (8.25)
and
*
1im_ Dou =+ u(p) + Kbu for p a.e. on C
prct (8.26)
|
? )
! e remark that K oM need not be bounded (e.g., Fichera and Sneider—Ludovic1,24
: Leis,25 and Craggs, Mangler and Zamit ) -

] '
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Proof: Since the results are to hold almost everywhere, cormer and edge points of

Here the + denotes limits from either side of C. We choose + to denote the portion
of R3 into which the normal from C points, call it D_; then D_ = R3\P+

C may be excluded and if p is a smooth point of Ci’ then

n
9 3
hm; 5a SoH T lim; 2 o f H(@) Y(p,q) ds
pc’ P pC 3=1 P

3

LI 2, (P, @) .
= 2 u(q) ———-— dsq + lim_ 5 u(q) YO(P,Q) dsq
C

=1 " + P
3 3 pC .
<« 3y, (P, ) 3
= u(q) —5———— ds + lim_ a—' i(q) Yo(p.q) dsq
=1 < e Po, (B.27)
th

where £° means that the i term is omitted.

Since o, is Liapunov, the validity of the jump relations (Guncer ) shows that

i

v (p,q)
lim ——— s M= Z f u(q) _T'_—ds ¥ ulp) +J‘ ui(q) Y (r. ) cls(l

et =1 ¢ oy
— v, (Peq)
- Z J u(q) ——— dsq Fu@E) + | uw@ 57, ds
=1 ¢y P ¢, "p
¥y, (P,a) _
Ju(q) ——-—— ds_ + u(p) (B.28)
q
) P

A similar decomposition establishes the jump condition for the double layer.
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As a consequence of Lemmas 2, 3, and 4, we have
Lemma 5: If pu ¢ L"(c), then

a_ 25 e L) (.29)
¥ np ]
pC
and
Hm_ Dy e LP(c) for p > 1 (8.30)
pc?

This follows immediately since p € ﬂ”(C) implies that Lemma 4 holds and also
Lemmas 2 and 3, hence u and K:u are in Lp(c) and Kou € Ll(c). Also of interest is
the normal derivative of the double layer for which we may state
Lemma 6: If u ¢ c® (c ) for every i, oy is Liapunov with index 1, (which means
In '(P-Q)|<A|p-q| ) and if one of the derivatives oD u/an or 3D u/Sn exists at a
point p € C, then the other exists and they are equal.

Proof: We obviously exclude corner and edge points since there is no normal at such

points. If p is an interior point of Ci, then the proof in the smooth case (Gimter
P 297 et eq. ) may be repeated without change since the crucial step involves treat-
ment of a small patch around p which, in this case as in the smooth case, lies on an
appropriately smooth Liapunov surface. The same argument shows that the result holds
for piecewise continuous densities even if the discontinuities occur at smooth
points, provided all points of discontinuity are excluded.

Finally, we list some properties of single and double layers considered as
operators mapping functions defined on C, not to functions on C, but to functioms
defined on the interior of C which we denote as D_. From Lemma 1 we immediately have

Lemma 7: Y € Lw(C)=9 Sou € LP(D_) for p > 1.

Also, since D u € Cm(D )and 1im Dy ¢ Lm(C)
o - poc ©

(Lemmas 2 and 4), for p ¢ ﬂ”(C). we have
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Lemma 8: u € L”(C)% Dou € I.P(D__) for p > 1,
More difficult to establish are properties of derivatives of potentials. However,
we do have '
Lemma 9: W € L'(C)=>V Sy ¢ 12 )
Proof: For p € D_, we have
1 - 1 ds
[vs ul < 5= | Iu@@| B ds_ < 2= ||u{| —a (8.31)
o 2n 3 q-—2n L 2
) P-q L©J |pql
. C
.therefore,
r r dB dsq
2 1
J- |Vsou| dt, < 5 ||u||2m ) q 2] 1 7 dt,
D (2m) L@ ¢ le-al® g fe-qyl
< 1 l h-l 2 ([ dt
- 2 ds d- (B.32)
2n L C 2
@n © ¢ < D_ [p-al?lpmq| !
But
dat dt
P P
I lp-q|%|e-q l25 (|2 p+a-q, |2 ®-3
D_ 1 Bd(O) 1
where d is twice the diameter of D_. Explicitly
dr d m 2n sin o
f —s <) dr] @ dé )
p 1Pmaltleg 1Ty 9 +a=q, | %-2p* (a,-0)
IQ'ql n o 27 2
<f I def dd ain O Z P (cos Y¥) | +
— l o
0 0 q“‘1
(3.34)
(comt.)
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o Dt
d L 2n @
la-q, |" 2
+ dr do dd sin 0 Z ey P r‘(cos Y)
or
fa-qy{ 0 "o n=0 (B.34)
where we have employed the generating function for Lengendre polynomials and
p* (q,-q)
h’. (ql_q)‘
Using the orthgonality of Legendre functions leads to
ar la-q, |
T < dr 2 Tl In¥2
p_ [P-al®le-qy| om0 la~ l
d s 2n
w1l
+ dr 2 22
la-a,| w0
= 20+1 la-q, | 1q-qllz" d
< 4m 2 2 : 2a+2 T T 20¥1
amo (2=tD7 | la-qy] =0 r r=lq-q, |
- -}
<8 E - 12m (B.36)
lQ'qll n=0 (2n+1) lQ*‘ql‘

Substituting this estimate in Equation (B.32) we obtain
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o

3 2 1
CRTLPSPENTMICIY I g
(] P " L"’(c)

D ¢ c legyl

3 2
<= {ull%, Jsu- (8.37)
<z lL @4 %" %

But Lemma 1 ensures us that the single layer with density 1 is bounded as is its
integral over C, hence

[ rpiz e, <2z, nisan 3.3
D L (C) L™(C)
which completes the proof of the Lemma.

It should be noted that no claim is made about the sharpness of the results of
this Appendix. Indeed more complete and precise estimates of the mapping properties
of single and double layers may become available (see, for example, Fabes, Jodeit,
and Riviere27).
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